

Thermowells & Protection Tubes Catalog

DAILY THERMETRICS is a single source provider of superior temperature measurement systems and field services to make projects flow seamlessly from feasibility to construction. This unique capability allows **Daily** to provide design and technical support, as well as control the fabrication and testing schedule to ensure timely, consistent delivery.

Since 1973, Daily Thermetrics Corporation has provided the process industries with the tools for process optimization through precise temperature measurement instrumentation. We are known for the highest quality equipment, turnkey services, and emergency delivery services to meet the demands of our customers. Daily Thermetrics owns multiple patents in the field of temperature sensing instrumentation and is committed to pushing the limits of conventional temperature control through constant research and development. Our patented CatTracker[®] catalyst tracking system leads the industry in vessel temperature profiling and is the first flexible thermocouple system certified as SIL 3 capable. Proprietary CatTracker[®] manufacturing techniques have provided the building blocks for other Daily Thermetrics exclusive products, including Daily Premium[™] Line and EZPad[™] replaceable skin thermocouples. Whatever the situation, from common thermocouple issues to complex hydrocracker catalyst profiling and fired heater issues, Daily Thermetrics' technical team is qualified to provide essential expertise and best-practice solutions. Throughout the refining, petrochemical, and power industries, Daily Thermetrics has provided thousands of plant operators with key process control data all over the world.

1. Daily Thermetrics' U.S. and worldwide patents include USPN 8,870,455; USPN 6,599,011; USPN 6,550,963; CA 2,848,398; and CA 2,449,074. Additional patents are pending.

The **Daily** Advantage

Comprehensive Solutions for Your Temperature Needs

PRODUCT LINES

- Thermocouples and RTDs
- Surface Temperature Measurement
- Vessel Thermometry
- Thermowells

EXPERTISE

- Refinery-Wide Application Specialists
- Process Unit Specific Approach
- Proprietary Wake Frequency Analysis Software per ASME PTC 19.3 TW-2016 (available online)

INSPECTION AND CERTIFICATION

Full Documentation and Traceability of In-House Testing including (but not limited to):

- Ultrasonic Inspection of Full Penetration Welds
- Radiographic Inspection of all Sensors
- Positive Material Identification
 (raw materials and finished products)
- Calibration Test (including cryogenic temperatures)
- ATEX and IEC Flameproof and Intrinsically Safe Certified
 Assemblies

QUALITY CONTROL

- ISO 9001:2015 Certified
- Thermowell Serialization for Complete Traceability
- · Climate and Contaminant Controlled Manufacturing Facility
- Level II Inspectors
- ASME Section IX Qualified Welders

SERVICE

- Turnkey and Supervisory Installation Services
- Site Turnaround (STAR[™]) Services
- Field Diagnostics & Application Consultation

Thermowells General Information

Every thermowell and pipewell purchased from Daily Thermetrics is designed and manufactured by Daily Thermetrics, an ISO 9001:2008 Certified company. This enables Daily Thermetrics to offer same-day shipping, while at the same time ensuring consistent quality to a recognized international standard. Thermowells are designed to protect the contained sensor, provide an effective seal against service conditions, and allow for sensor replacement during unit operation. Proper design of these assemblies directly correlates to sensor reliability and the overall safety of the process unit. Daily Thermetrics has developed comprehensive calculation software in strict accordance with ASME PTC 19.3 TW-2016 to ensure all thermowells designed are suitable for the process conditions to which they will be exposed.

With over 40 years of experience, Daily Thermetrics' technical team can assist and provide industry best practice solutions for even the most challenging process units and environments. Daily Thermetrics leads the industry in providing our clients with the most advanced manufacturing and NDT (Non-Destructive Testing) techniques to ensure maximum safety, service life, and performance.

For more information regarding material availability, please contact <u>sales@dailyinst.com</u> or your local Daily Thermetrics representative.

Around-the-Clock Service

Emergency delivery situations commonly arise as a result of discovery during turnarounds. Daily Thermetrics is structured to support your turnaround needs by offering immediate service 24 hours a day, 7 days a week. No matter what time of day or night, a product specialist is always ready to assist you.

For all inquiries, please e-mail us at <u>sales@dailyinst.com</u> For emergency assistance, please call at +1 713.780.8600

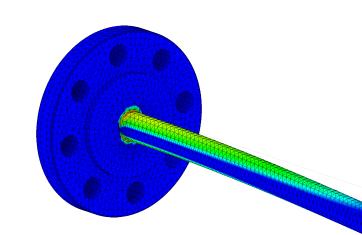
Thermowells

Unique Features and Advantages

ULTRASONIC TESTING FOR ALL FULL PENETRATION WELDS

Comprehensive examination of full penetration welds for flanged thermowells is critical to prevent thermowell failure. Daily Thermetrics utilizes **Shear Wave** and/or **Phased-Array** ultrasonic testing to inspect 100% of full penetration welds.

CORROSION RESISTANT FINISH


Every thermowell is manufactured to a high polish finish of **8 AARH or better** which minimizes corrosion and pitting during service.

SERIALIZATION

Each thermowell is individually laser etched with a unique serial number. This links all design and testing information to the **Daily Thermetrics database**, allowing for easy information retrieval in the absence of a data sheet.

COMPLETE WAKE FREQUENCY ANALYSIS

Complete Wake Frequency Analysis (per **ASME PTC 19.3 TW-2016**) is offered at no extra cost for every thermowell ordered through Daily Thermetrics.

PMI (POSITIVE MATERIAL IDENTIFICATION)

Daily Thermetrics performs both fluorescent and spectrograph PMI on incoming and outgoing materials and assemblies to ensure *all materials are PMI verified* (and PMIV stamped) prior to shipment.

Thermowell Selection Guide

Styles and Configurations

MODEL 110 THREADED THERMOWELL

See pages 7 - 8 for options and configurations

MODEL 140 VAN STONE THERMOWELL

See pages 11 - 12 for options and configurations

Thermowell Selection Guide

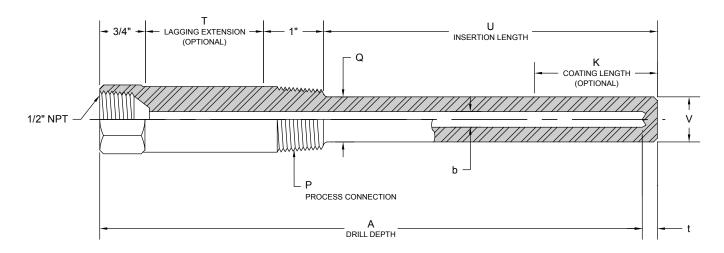
Styles and Configurations

MODEL 150 SOCKET WELD AND WELD-IN THERMOWELL

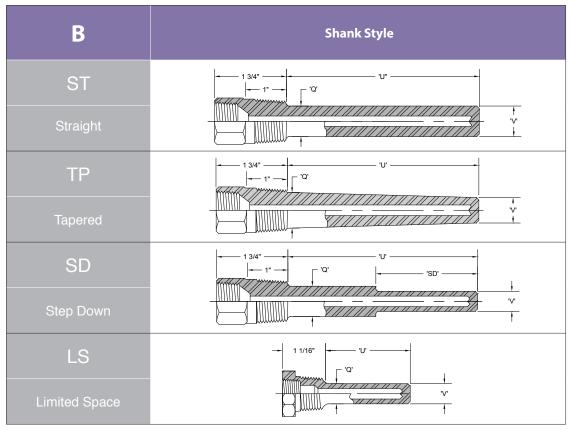
See pages 13 - 14 for options and configurations



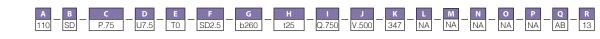
MODEL 190 PROTECTION TUBE


See pages 15 - 16 for options and configurations

MODEL 800 PIPEWELL


See pages 17 - 18 for options and configurations

Model 110 Threaded Thermowell


Daily Thermetrics' Model 110 Threaded Thermowells are manufactured from a single piece of solid bar stock and can be utilized with thermocouples, RTDs, bimetallic thermometers, and other instrumentation devices (see Daily Thermetrics' Sensor Catalog). All aspects of the thermowell are customizable.

* Lagging extension is shown as T = 0 on table above.

Model 110 How to Order

EXAMPLE:

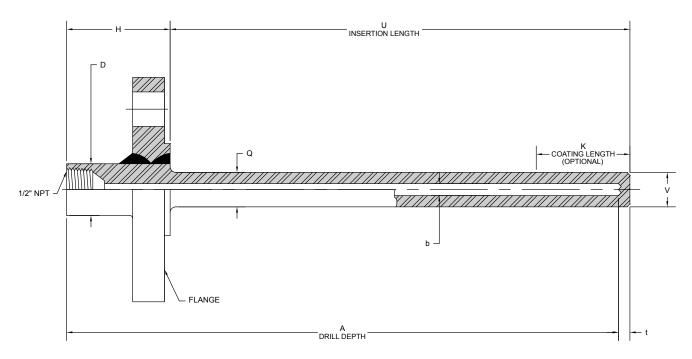
• INDICATES COMMON SELECTION

Α	Model		1	Q Dimension (Root Diameter)		ο	Coating Process	
110	Threaded Thermowell	•	Q.750	.750"			Welded / Hardface Overlay	Γ
		_	Q.875	.875" *	•	W	(Stellite [®] 6 only)	ľ
В	Shank Style		Q1.063	1.063" **	•	SF	Spray and Fuse	T
ST	Straight	•	QX.XXX	Custom	Π	NA	No Coating	
TP	Tapered	•		* For 3/4" NPT, Max Q = .875"				-
SD	Step Down			** For 1" NPT, Max Q = 1.063"		Р	Plug and Chain	
LS	Limited Space		L	V Dimension (Tip Diameter)		304PC	304SS	Т
		_	V.500	.500" *		316PC	316SS	t
С	P Size (Process Connection)		V.625	.625" **	•	BRPC	Brass	t
P.75	3/4" NPT	•	V.750	.750"	H	NA	None	t
P1.00	1" NPT	•	VX.XXX	Custom	\square			1
PX.XX	Custom			* For Step Down or .260" Bore, Min V = .500	,,		Optional Testing ²	_
D	U Dimension (Insertion Length)			** For Tapered or .385" Bore, Min V = .625"		Q	(String Letters Together for Multiple)	
			к	Thermowell Material Code		А	Internal Hydrostatic Test with Report	Т
ULS	1.63" (Limited Space Design)		316	316/316L SS	•	В	External Hydrostatic Test with Report	t
U2.5	2.50"	•	347	347/347H SS		С	Hardness Test with Report	t
U4.5	4.50"	•	M400	Monel [®] 400	H	D	Ferrite Test with Report	t
U7.5	7.50"	•	1600	Inconel® 600	H	NA	No Additional Testing	t
U10.5	10.50"		1800		$\left \right $			1
U13.5	13.50"	\square	1800	Incoloy® 800			Optional Test Reports ²	
U19.5	19.50"	\square		See Page 19 for Additional Materials		R	(String Numbers Together for Multiple)	
			L	Coating		1	Positive Material Identification Report	Т
UXX.XX	Custom		S6	Stellite® 6	•	2	Positive Material Identification Certificate	÷
	T Dimension		S1	Stellite [®] 1	Π	3	NACE MR0103 Compliance Certificate	┢
E	(Optional Lagging Extension)		C88	Colmonoy [®] 88	П	4	Material Test Reports	┢
T2	2.00"		NA	No Coating	•	NA	No Additional Reports	+
ТЗ	3.00"	•						Ľ
TX.XX	Custom	-	м	Coating Thickness ¹				
то	No Lagging Extension	•	A	1/16" Per Side	•			
			В	1/8" Per Side				
_	SD Dimension		NA	No Coating	•			
F	(Step Down Length)							
SD2.5	2.50"	•	Ν	K Dimension (Coating Length)				
SDX.X	Custom		KU	Entire U Dimension	•			
NA	Not Applicable for Shank Style Straight		K3	3" From Tip				
	or Tapered		KXX	Custom Length From Tip				
G	b Dimension (Bore)		NA	No Coating	•			
b260	.260"	•						
b385	.385"							
bXXX	Custom							
5777								
н	t Dimension (Tip Thickness)							
t25	.25"	•						
t38	.38"							
t31	.31"							
tXX	Custom							

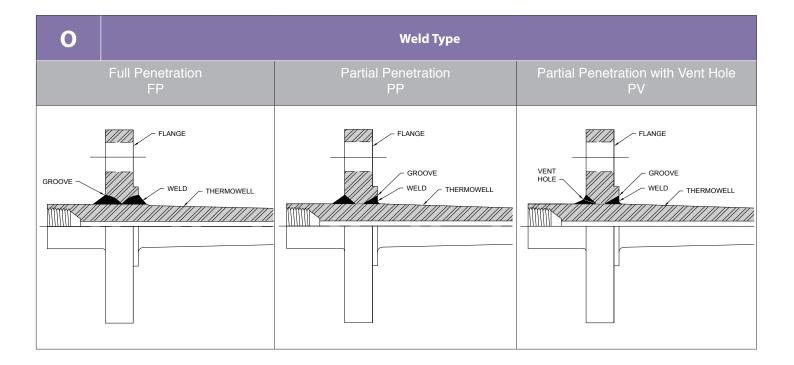
- 1. Q and V dimensions are final after coating. Base material will be undercut accordingly. Minimum wall thickness before coating shall be .120".
- 2. See Page 25 for more information on testing and reports.

Minimum Tip Thickness is .120"

- 3. Unique and simplified item number will be generated and issued to every customized thermowell for ease of reordering.
- 4. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.


•

•


•

•

Model 130 Flanged Thermowell

Daily Thermetrics' Model 130 Flanged Thermowells consist of a thermowell shank made from a single piece of solid bar stock welded to a flange. Raised face and ring type joint flange connections are available, and gaskets must be used during installation. Designed for use with thermocouples, RTDs, bimetallic thermometers, and other instrumentation devices (see Daily Thermetrics' Sensor Catalog). All aspects of the thermowell are customizable.

Model 130 How to Order

EXAMPLE:

AB	C D	E	F	G	н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U	V
120 90	U13 H3.25	SD2.5	b260	t25	D1.125	Q.750	V.500	347	3RF	900	347	FP	NA	NA	NA	NA	NA	AB	13

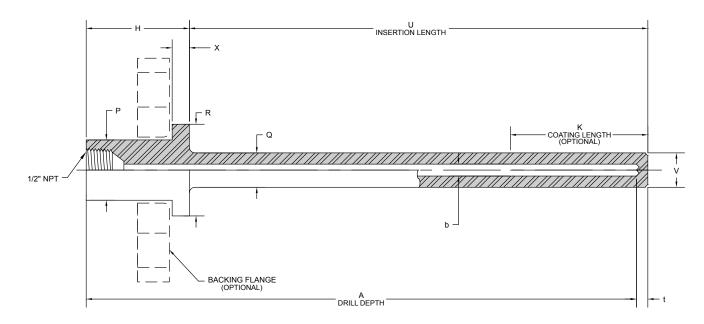
INDICATES COMMON SELECTION

A	Model	J	V Dimension (Tip Diameter)		Q	Coating Thickness ¹
130	Flanged Thermowell	V.500	.500" *		A	1/16" Per Side
100		V.625	.625" **	•	В	1/8" Per Side
В	Shank Style	V.750	.750"		NA	No Coating •
ST	Straight	VX.XXX	Custom		INA	
TP	Tapered •	VA.AAA		E00"	R	K Dimension (Coating Length)
SD	Step Down		* For Step Down or .260" Bore, Min V = ** For Tapered or .385" Bore, Min V =	.625"	KU	
					KU K3	Entire U Dimension 3" From Tip
с	U Dimension (Insertion Length)	К	Thermowell Material Code		KXX	· · · · · · · · · · · · · · · · · · ·
U4	4.00"	316	316/316L SS	•		Custom Length From Tip
U7	7.00"	347	347/347H SS		NA	No Coating
U10	10.00" •	M400	Monel® 400			
U13	13.00"	1600	Inconel [®] 600		S	Coating Process
U16	16.00"	1800	Incoloy [®] 800		w	Welded / Hardface Overlay (Stellite [®] 6 only)
U22	22.00"		See Page 19 for Additional Materia	als		
UXX.XX	Custom •		Flange Size and Type ⁵		SF	Spray and Fuse
		1RF	1" RF	•	NA	No Coating
D	H Dimension (Head Length)	1.5RF	1-1/2" RF	•		
H2.25	2.25" •	2RF	2" RF	•	т	Plug and Chain
H3.25	3.25"	3RF	3" RF	•	304PC	304SS
HX.XX	Custom	1.5RTJ	1-1/2" RTJ	•	316PC	316SS
	For a flange rating 600# or greater, a	2RTJ	2" RTJ		BRPC	Brass
	minimum H of 3.25" may be required.	XRF	Custom Size RF		NA	None •
E	SD Dimension	XRTJ	Custom Size RTJ		. <u> </u>	
	(Step Down Length)	XIIIJ				Optional Testing ²
SD2.5	2.50" •		For 1" flanges, verify Q will fit in noz	zie	U	(String Letters Together for Multiple)
SDX.X	Custom	M	Flange Rating ⁵		A	Internal Hydrostatic Test with Report
NA	Not Applicable for Shank Style Straight	150	150#	•	В	External Hydrostatic Test with Report
	or Tapered	300	300#	•	С	Hardness Test with Report
F	b Dimension (Bore)	600	600#	•	D	Ferrite Test with Report
b260	.260"	900	900# 6		E	Dye Penetrant Test with Report
b200	.385"	1500	1500#		F	Radiographic Test with Report
bXXX	Custom	2500	2500#		NA	No Additional Testing
DAAA	Ousion					
G	t Dimension (Tip Thickness)	N	Flange Material Code			Optional Test Reports ²
t25	.25" •	316	316/316L SS	•	v	(String Numbers Together for Multiple)
t38	.38"	347	347/347H SS		1	Positive Material Identification Report
t31	.31"	M400	Monel® 400		2	Positive Material Identification Certificate
tXX	Custom	1600	Inconel® 600		3	NACE MR0103 Compliance Certificate
	Minimum Tip Thickness is .120"	1800	Incoloy [®] 800		4	Material Test Reports
н	D Dimension (Bar Diameter)		See Page 19 for Additional Material	S		Ultrasonic Test Report
D1.125	1.125"	ο	Weld Type		5	(Full Penetration Welds Only)
D1.250	1.250"	FP	Full Penetration	•	NA	No Additional Reports
D1.375	1.375"	PP	Partial Penetration			
DX.XXX	Custom	PV	Partial Penetration w/ Vent			
270000						
1	Q Dimension (Root Diameter)	Р	Coating			
Q.750	.750"	S6	Stellite® 6	•		
Q.875	.875" •	S1	Stellite® 1			
Q1.063	1.063" •	C88	Colmonoy [®] 88			
QX.XXX	Custom	NA	No Coating	•		

1. Q and V dimensions are final after coating. Base material will be undercut accordingly. Minimum wall thickness before coating shall be .120".

2. See Page 25 for more information on testing and reports.

3. Unique and simplified item number will be generated and issued to every customized thermowell for ease of re-ordering.


4. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.

5. Flange face finish is 125-250 RMS for raised face and 63 AARH for RTJ sealing surface.

6. Per ASME B16.5, 900# flanges have the same dimensions as 1500# flanges for flanges 2-1/2" and smaller. For those sizes, 1500# will be provided.

Daily Thermetrics Corporation9600 W Gulf Bank Rd, Houston, TX 77040 USA+1 713.780.8600sales@dailyinst.comwww.dailyinst.com

Model 140 Van Stone Thermowell

Daily Thermetrics' Model 140 Van Stone Thermowells are constructed from a single piece of solid bar stock and are designed to be in direct contact with the process. Raised face and ring type joint flange connections are available and gaskets must be used during installation. Designed for use with thermocouples, RTDs, bimetallic thermometers, and other instrumentation devices (see Daily Thermetrics' Sensor Catalog). All aspects of the thermowell are customizable.

H/I			Star	ndard P, R, & X	(Dimension Chart		
RF		R Dim Raised Fac	ension ce Diameter		P Dimension	X Dimension	
Raised Face	150#	300-600#	900-1500#	2500#	Offset Diameter	Face Thickness	
1"	2"	2"	2"	2"	1.315"		
1-1/2"	2.875"	2.875"	2.875"	2.875"	1.9"	.375"	
2"	3.625"	3.625"	3.625"	3.625"	2.375"		
2-1/2"	4.125"	4.125"	4.125"	4.125"	2.875"	500"	
3"	5"	5"	5"	5"	3.5"	.500"	
RTJ		R Dim Ring-Type Jo	ension oint Diameter		P Dimension	X Dimension	
Ring Type Joint	150#	300-600#	900-1500#	2500#	Offset Diameter	Face Thickness	
1"	2.5"	2.75"	2.813"	3.25"	1.315"		
1-1/2"	3.25"	3.563"	3.625"	4.5"	1.9"	.500"	
2"	4"	4.25"	4.875"	5.25"	2.375"		
2-1/2"	4.75"	5"	5.375"	5.875"	2.875"	.625"	

Model 140 How to Order

EXAMPLE:

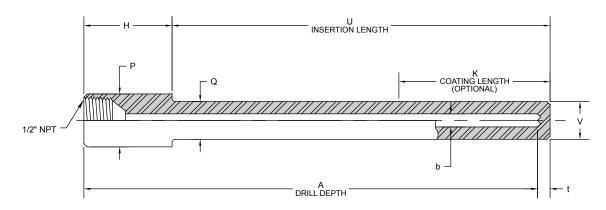
• INDICATES COMMON SELECTION

A	Model	I	Flange Rating ⁵		Р	Coating Process	
140	Van Stone Thermowell •	150	150#	•	w	Welded / Hardface Overlay	
		300	300#	•	**	(Stellite [®] 6 only)	•
В	Shank Style	600	600#	•	SF	Spray and Fuse	
ST	Straight •	900	900# 7		NA	No Coating	•
TP	Tapered	1500	1500#			3	
SD	Step Down	2500	2500#		Q	Backing Flange ⁶	
		•			A105	A105	•
С	U Dimension (Insertion Length)	J	Q Dimension (Root Diameter)		304	304SS	+
U4 U7	4.00" 7.00"	Q.750	.750"		316	316SS	+
		Q.875	.875"	•	NA	None	•
U10	10.00"	Q1.063	1.063"	•		See Page 19 for Additional Materials	
U13	13.00"	QX.XXX	Custom		R	Diversed Chain	
U16	16.00"	-			8 304PC	Plug and Chain 304SS	-
U22	22.00"	к	V Dimension (Tip Diameter)		304PC 316PC	316SS	+
UXX.XX	Custom	V.500	.500" *		BRPC	Brass	+
D	H Dimension (Head Length)	V.625	.625" **	•	NA	None	•
H2.25	2.25"	V.750	.750"		INA	None	•
H3.25	3.25"	VX.XXX	Custom				
HX.XX	Custom	1	* For Step Down or .260" Bore, Min V = .		s	Optional Testing ²	
ПАЛА	Oustoni		** For Tapered or .385" Bore, Min V = .6	625"		(String Letters Together for Multiple)	
	SD Dimension		Thermowell Material Code		A	Internal Hydrostatic Test with Report	
E	(Step Down Length)	316	316/316L SS	•	В	External Hydrostatic Test with Report	
SD2.5	2.50"		347/347H SS		С	Hardness Test with Report	
SDX.X	Custom				D	Ferrite Test with Report	
NA	Not Applicable for Shank Style Straight	- M400 1600	Monel [®] 400		NA	No Additional Testing	•
	or Tapered	1800	Incoloy® 800				
		1800	-			Optional Test Reports ²	
F	b Dimension (Bore)	4	See Page 19 for Additional Material	s	т	(String Numbers Together for Multiple	2)
b260	.260"	м	Coating		1	Positive Material Identification Report	Т
b385	.385"	S6	Stellite [®] 6	•	2	Positive Material Identification Certificate	e
bXXX	Custom	S1	Stellite [®] 1		3	NACE MR0103 Compliance Certificate	,
G	t Dimension (Tip Thickness)	C88	Colmonoy [®] 88		4	Material Test Reports	+
t25	.25"	NA	No Coating	•	NA	No Additional Reports	•
t38	.38"	1					
t31	.31"	N	Coating Thickness ¹				
tXX	Custom	A	1/16" Per Side	•			
001	Minimum Tip Thickness is .120"	В	1/8" Per Side				
		NA	No Coating	•			
Н	Connection Size and Type ⁵	┦ └───┘					
1RF	1" RF •	- O	K Dimension (Coating Length)				
1.5RF	1-1/2" RF	κυ	Entire U Dimension	•			
2RF	2" RF •	КЗ	3" From Tip				
3RF	3" RF	КХХ	Custom Length				
	1-1/2" RTJ 🔹	NA	No Coating	•			
1.5RTJ							
1.5RTJ 2RTJ	2" RTJ						
1.5RTJ	2" RTJ • Custom RF Custom RTJ						

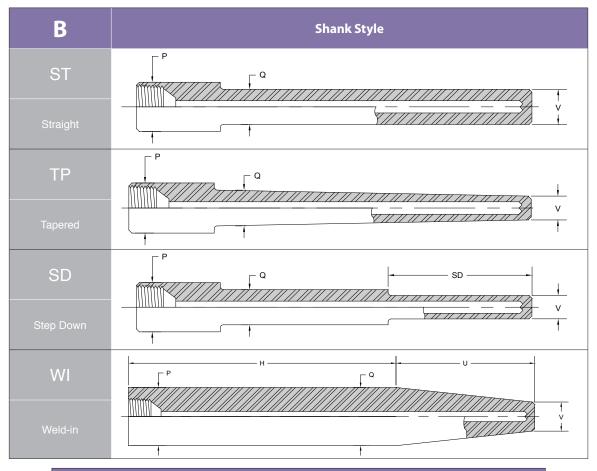
1. Q and V dimensions are final after coating. Base material will be undercut accordingly. Minimum wall thickness before coating shall be .120".

2. See Page 25 for more information on testing and reports.

3. Unique and simplified item number will be generated and issued to every customized thermowell for ease of reordering.


- 4. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.
- 5. Flange face finish is 125-250 RMS for raised face and 63 AARH for RTJ sealing surface.

6. Backing flange is lap joint style. For slip on style contact sales.


7. Per ASME B16.5, 900# flanges have the same dimensions as 1500# flanges for flanges 2-1/2" and smaller. For those sizes, 1500# will be provided.

12

Model 150 Socket Weld and Weld-In Thermowell

Daily Thermetrics' Model 150 Socket Weld and Weld-In Thermowells are constructed from a single piece of solid bar stock and are designed to be in direct contact with the process. They require field welding and are best suited for permanent installations. The thermowell diameter is designed to fit standard socket weld connections. Designed for use with thermocouples, RTDs, bimetallic thermometers, and other instrumentation devices (see Daily Thermetrics' Sensor Catalog). All aspects of the thermowell are customizable.

	Sock	et Weld Dime	ension Chart		
Pipe Size (Nominal)	3/4"	1"	1-1/4"	1-1/2"	2"
P Dimension Offset Diameter)	1.050"	1.315"	1.660"	1.900"	2.375"

Model 150 How to Order

EXAMPLE:

• INDICATES COMMON SELECTION

A	Model		1	Q Dimension (Root Diameter)		0	Coating Process	
150	Socket Weld or Weld-In Thermowell	•	Q.750	.750"		w	Welded / Hardface Overlay (Stellite [®] 6 only)	
В	Shank Style		Q.875 Q1.063	.875"	•	SF	Spray and Fuse	+
ST	Straight	•	QX.XXX	Custom				+
TP	Tapered	•	QX.XXX	ousion		NA	No Coating	•
SD	Step Down	\square	J	V Dimension (Tip Diameter)		Р		
WI	Weld-In	\square	V.500	.500" *		304PC	Plug and Chain 304SS	-
			V.625	.625" **	•	304PC 316PC	316SS	+
С	U Dimension (Insertion Length)		V.750	.750"		BRPC	Brass	+-
U4	4.00"	•	VX.XXX	Custom	++	NA	None	-
U7	7.00"	•	VA.AAA	* For Step Down or .260" Bore, Min V = .5	00"	INA	None	
U10	10.00"			** For Tapered or .385" Bore, Min V = .62	25"			
U13	13.00"					Q	Optional Testing ² (String Letters Together for Multiple)	
U16	16.00"		к	Thermowell Material Code		A	Internal Hydrostatic Test with Report	-
U22	22.00"		316	316/316L SS	•	C	Hardness Test with Report	+
UXX.XX	Custom		347	347/347H SS		D	Ferrite Test with Report	+
			M400	Monel [®] 400		NA	No Additional Testing	
D	H Dimension (Head Length)		1600	Inconel [®] 600		INA	No Additional Testing	
H1.75	1.75"	•	1800	Incoloy [®] 800				
H6.75	6.75" Weld-In	•		See Page 19 for Additional Materials		R	Optional Test Reports ² (String Numbers Together for Multiple	2)
HX.XX	Custom		L	Coating		1	Positive Material Identification Report	Т
	SD Dimension		S6	Stellite [®] 6	•	2	Positive Material Identification Certificate	e
E	SD Dimension (Step Down Length)		S1	Stellite® 1		3	NACE MR0103 Compliance Certificate	,
SD2.5	2.50"	•	C88	Colmonoy [®] 88		4	Material Test Reports	
SDX.X	Custom	-	NA	No Coating	•	NA	No Additional Reports	•
	Not Applicable for Shank Style Straight	+						
NA	or Tapered	•	М	Coating Thickness ¹				
			A	1/16" Per Side	•			
F	b Dimension (Bore)	_	В	1/8" Per Side				
b260	.260"	•	NA	No Coating	•			
b385	.385"	$\left \right $						
bXXX	Custom		N	K Dimension (Coating Length)				
G	t Dimension (Tip Thickness)		KU	Entire U Dimension	•			
t25	.25"	•	K3	3" From Tip	-+-			
t38	.38"	-	KXX	Custom Length				
t31	.31"	+	NA	No Coating	•			
tXX	Custom	+						
001	Minimum Tip Thickness is .120"							
Н	P Dimension (Offset Diameter)							
P1.315	1.315" 1" Sock Weld	•						
P1.050	1.050" 3/4" Sock Weld	•						
P1.500	1.500" Weld-In	•						
	Quatant							

1. Q and V dimensions are final after coating. Base material will be undercut accordingly. Minimum wall thickness before coating shall be .120".

2. See Page 25 for more information on testing and reports.

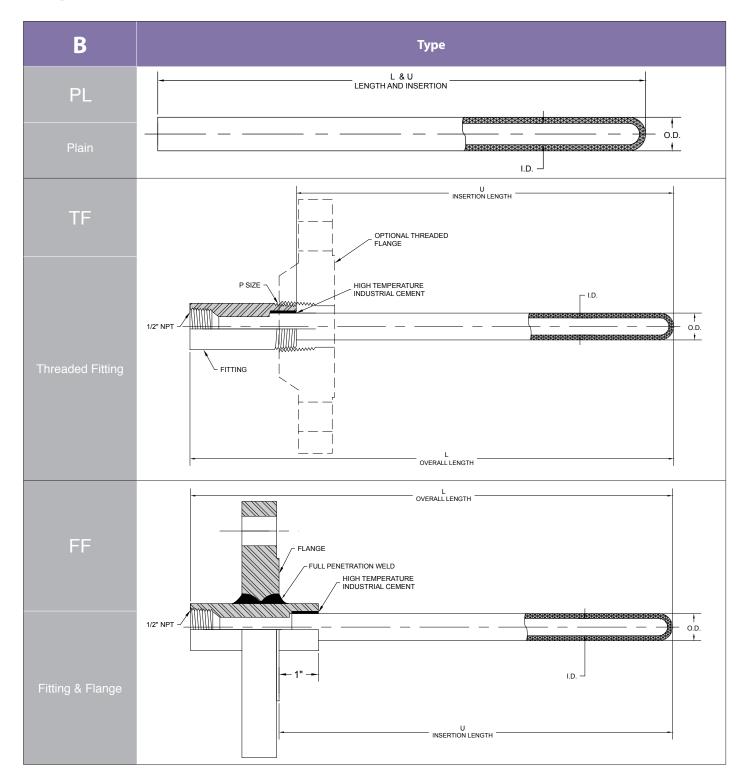
Custom

PX.XXX

3. Unique and simplified item number will be generated and issued to every customized thermowell for ease of reordering.

4. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.

٠


•

•

•

Model 190 Protection Tube

Daily Thermetrics' Model 190 Protection Tubes are constructed from ceramic or metal/ceramic composites and offer much higher temperature limits and better chemical resistance than metal alternatives. They are designed to be in direct contact with process and can be built with either threaded or flanged connection types. Designed for use with thermocouples, RTDs, and other instrumentation devices (see Daily Thermetrics' Sensor Catalog).

Model 190 How to Order

EXAMPLE:

• INDICATES COMMON SELECTION

Α	Model	
190	Protection Tube	•
_	_	
В	Туре	
PL	Plain	•
TF	Threaded Fitting (Flange is threaded and shipped separately)	•
FF	Fitting & Flange	•

С	L Dimension (Overall Length)	
L12	12"	٠
L18	18"	٠
L24	24"	•
L36	36"	
L48	48"	
L72	72"	
LXX	Custom	

Metal Ceramic Tubes have 48" max length

D U Dimension (Inseration Length) U12 12" U18 18" U24 24" U30 30" U36 36"	
U18 18" U24 24" U30 30" U36 36"	
U24 24" U30 30" U36 36"	•
U30 30" U36 36"	•
U36 36"	•
U48 48"	
U60 60"	
U72 72"	
UXX Custom	

Metal Ceramic Tubes have 48" max length

E
P.75
P1.00
P1.50
NA

P Size (Process Connection)	
3/4" NPT	ĺ
1" NPT	Í
1-1/2" NPT	ĺ
Non-Threaded Connection (Plain or Fitting & Flange)	

Metal Ceramic Tubes only come in 1" or greater

F	Ceramic Material Code	
AL	Alumina	•
ML	Mullite	•
HX	Hexoloy®	•
MC	Metal Ceramic	

	Flange Size and Type ⁴	
1RF	1" RF	•
1.5RF	1-1/2" RF	•
2RF	2" RF	•
3RF	3" RF	•
I.5RTJ	1-1/2" RTJ	•
2RTJ	2" RTJ	•
XRF	Custom RF	
XRTJ	Custom RTJ	
NA	No Flange	•

н	Flange Rating ⁴	
150	150#	•
300	300#	•
600	600#	•
900	900# ⁶	
1500	1500#	
2500	2500#	
NA	No Flange or Fitting	•

	Flange or Fitting Material Code	
316	316/316L SS	•
347	347/347H SS	
M400	Monel [®] 400	
1600	Inconel® 600	
1800	Incoloy [®] 800	
NA	No Flange	•

See Page 19 for Additional Materials

OD/ID	
OD = 3/8" ; ID = 1/4" Alumina, Mullite or Hexoloy®	•
OD = 11/16" ; ID = 7/16" Alumina, Mullite or Hexoloy®	
OD = 1" ; ID = 3/4" Alumina, Mullite or Hexoloy®	
OD = 7/8" ; ID = 5/8" Metal Ceramic	

А В

С

D

٠ •

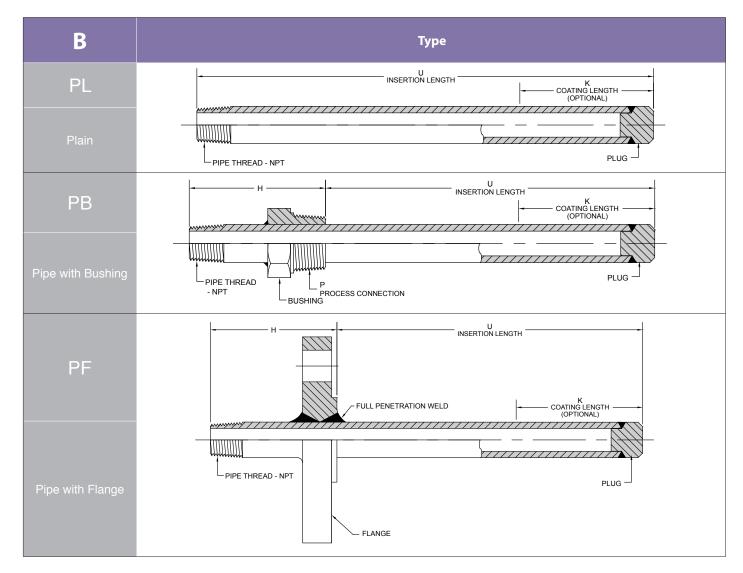
•

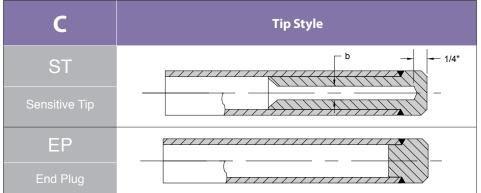
Contact Sales for Other Options

к	Optional Test Reports ¹ (String Numbers Together for Multiple)	
1	Positive Material Identification Report ⁵	
2	Positive Material Identification Certificate ⁵	
4	Material Test Reports	
5	Ultrasonic Test Report (Full Penetration Welds Only)	
NA	No Additional Reports	•

1. See Page 25 for more information on testing and reports.

- 2. Unique and simplified item number will be generated and issued to every customized thermowell for ease of reordering.
- 3. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.
- 4. Flange face finish is 125-250 RMS for raised face and 63 AARH for RTJ sealing surface.


5. Positive Material Identification for flange and fitting only.


6. Per ASME B16.5, 900# flanges have the same dimensions as 1500# flanges for flanges 2-1/2" and smaller. For those sizes, 1500# will be provided.

16

Model 800 Pipewell

Daily Thermetrics' Model 800 Pipewells are built from industrial grade pipe (as opposed to bar stock) to accommodate longer lengths which might not be practical for traditional thermowells. Additionally, Pipewell assemblies can accommodate multiple sensing probes to provide a more thorough temperature profile along the length of the pipe. These multipoint systems can be paired with secondary containment chambers and localized junction boxes for vessel profiling. Connection types can be threaded (NPT), flanged, or other.

Model 800 How to Order

EXAMPLE:

• INDICATES COMMON SELECTION

Α	Model	
800	Pipewell	•
В	Туре	
PL	Plain	•
PB	Pipe with Bushing	•
PF	Pipe with Flange	•

С	Tip Style	
EP	End Plug	•
ST	Sensitive Tip	•

	U Dimension (Insertion Length)	
U12	12"	
U18	18"	
U24	24"	
U30	30"	
U36	36" •	•
U48	48"	•
U60	60"	
U72	72"	
UXX	Custom	

E	H Dimension (Head Length)	
H3	3"	•
HXX	Custom	
HN	None (For Plain Model)	•

F	Pipewell Material Code	
304	304SS	٠
316	316SS	٠
347	347SS	٠
1600	Inconel® 600	

See Page 19 for Additional Materials

G	b Dimension (Bore for Sensitive Tip)	
b281	.281"	٠
bXXX	Custom	
NA	No Bore (End Plug)	

н	Pipe Size	
P1/2	1/2"	•
P3/4	3/4"	•
P1	1"	•
PXXX	Custom	٠

	Pipe Schedule	
SCH40	Sch 40	•
SCH80	Sch 80	•
SCH160	Sch 160	•
SCHXXH	Sch XXH	

J	Process Connection ⁴	
1RF	1" RF	•
1.5RF	1-1/2" RF	•
2RF	2" RF	•
3RF	3" RF	•
1.5RTJ	1-1/2" RTJ	•
2RTJ	2" RTJ	•
XRF	Custom RF	
XRTJ	Custom RTJ	
B.75	3/4" NPT Bushing	•
B1	1" NPT Bushing	•
B1.25	1-1/4" NPT Bushing	
B1.5	1-1/2" NPT Bushing	
B2	2" NPT Bushing	
NA	No Process Connection	•

Flange Rating ⁴	
150#	•
300#	•
600#	•
900# 5	
1500#	
2500#	
No Flange	•
	150# 300# 600# 900# ⁵ 1500# 2500#

L	Bushing and/or Flange Material Code
316	316/316L SS •
347	347/347H SS
M400	Monel [®] 400
1600	Inconel [®] 600
1800	Incoloy [®] 800
A105	A105 CS •
NA	No Flange

See Page 19 for Additional Materials

М	Coating Spray and Fuse - 1/16" Thick	
S6	Stellite® 6	•
S1	Stellite® 1	
C88	Colmonoy® 88	
NA	No Coating	•

N	K Dimension (Coating Length)	
KU	Entire U Dimension	•
KXX	Custom Length From Tip	
NA	No Coating	•

А

В

С

D

F

F

NA

	Optional Testing ² (String Letters Together for Multiple)	
	Internal Hydrostatic Test with Report	
	External Hydrostatic Test with Report	
	Hardness Test with Report	
	Ferrite Test with Report	
	Dye Penetrant Test with Report	
	Radiographic Test with Report	
	No Additional Testing	•

Ρ	Optional Test Reports ² (String Numbers Together for Multiple)	
1	Positive Material Identification Report	
2	Positive Material Identification Certificate	
3	NACE MR0103 Compliance Certificate	
4	Material Test Reports	
5	Ultrasonic Test Report (Full Penetration Welds Only)	
NA	No Additional Reports	•

1. See Page 25 for more information on testing and reports.

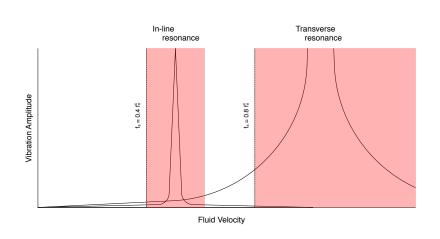
- 2. Unique and simplified item number will be generated and issued to every customized thermowell for ease of reordering.
- 3. The majority of options are customizable. Please contact sales if your requirements are not met by this catalog.
- 4. Flange face finish is 125-250 RMS for raised face and 63 AARH for RTJ sealing surface.
- 5. Per ASME B16.5, 900# flanges have the same dimensions as 1500# flanges for flanges 2-1/2" and smaller. For those sizes, 1500# will be provided.

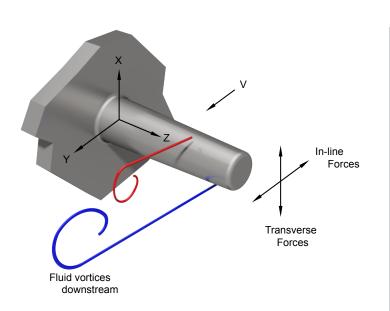
Thermowell Material Reference Guide

Ordering		UNS	Welding	Recommended Maximum	Tensile	Yield Strength		Α	llowable	Stress V	alues (PS	SI)	
Code	Material	Number	P-Number	Operating Temperature	Strength (PSI)	(PSI) (0.2% Offset)	0°F	300°F	500°F	700°F	900°F	1100°F	1300°F
304	304/304L SS	S30400 S30403	8	1500° F (816°C)	75,000	30,000	20,000	18,900	17,500	15,800	14,600	9,800	3,700
304H	304H SS	S30409	8	1500° F (816°C)	75,000	30,000	20,000	17,700	16,900	15,800	14,600	9,800	3,700
310	310SS	S31000	8	1500° F (816°C)	75,000	30,000	20,000	20,000	19,300	17,900	16,900	5,000	800
316	316/316L SS	S31600 S31603	8	1500° F (816°C)	75,000	30,000	20,000	20,000	18,000	16,300	15,600	12,400	4,100
316H	316H SS	S31609	8	1500° F (816°C)	75,000	30,000	20,000	20,000	18,000	16,300	15,600	12,400	4,100
321	321SS	S32100	8	1500° F (816°C)	75,000	30,000	20,000	19,100	18,700	17,500	16,500	6,900	1,700
347	347/347H SS	S34700 S34709	8	1500° F (816°C)	75,000	30,000	20,000	18,800	17,200	16,800	16,700	16,000	2,200
A105	A105 CS	K03504	1	1000° F (538°C)	70,000	36,000	20,000	20,000	19,600	17,200	6,700	-	-
F5	A182-F5 (5Cr-1/2Mo)	K41545	5B	1200° F (649°C)	70,000	40,000	20,000	19,400	19,200	18,200	10,900	2,900	-
F9	A182-F9 (9Cr-1Mo)	K90941	5B	1200° F (649°C)	85,000	55,000	24,300	23,500	23,300	22,100	16,400	3,300	-
F11	A182-F11 Cl 2 (1-1/4Cr-1/2Mo-Si)	K11572	4	1200° F (649°C)	70,000	40,000	20,000	20,000	20,000	20,000	13,700	2,800	-
F22	A182-F22 CI 3 (2-1/4Cr-1Mo)	K21590	5A	1200° F (649°C)	75,000	45,000	21,400	20,900	20,500	20,000	15,800	3,200	-
F91	A182-F91 (9Cr-1Mo-V)	K90901	15E	1200° F (649°C)	85,000	60,000	24,300	24,300	24,100	22,900	19,100	10,300	-
A20	Alloy 20 (20Cb-3)	N08020	45	800° F (427°C)	80,000	35,000	22,900	22,600	22,100	21,900	-	-	-
1600	Inconel [®] 600	N06600	43	1200° F (649°C)	80,000	35,000	22,900	20,800	20,200	19,600	16,000	3,000	-
1625	Inconel [®] 625	N06625	43	1200° F (649°C)	120,000	60,000	34,300	34,300	32,900	31,800	30,600	29,000	-
1800	Incoloy [®] 800	N08800	45	1500° F (816°C)	75,000	30,000	20,000	20,000	20,000	20,000	20,000	13,000	2,000
1800H	Incoloy [®] 800H	N08810	45	1650° F (899°C)	65,000	25,000	16,700	14,400	12,900	11,600	10,700	10,000	4,700
1800HT	Incoloy [®] 800HT	N08811	45	1650° F (899°C)	65,000	25,000	16,700	16,700	16,700	15,700	14,500	12,900	5,400
1825	Incoloy [®] 825	N08825	45	1000° F (538°C)	85,000	35,000	23,300	23,300	23,300	23,300	22,800	-	-
C276	Hastelloy [®] C-276	N10276	43	1250° F (677°C)	100,000	41,000	27,300	27,300	26,900	24,000	22,600	15,000	-
HASTX	Hastelloy [®] X	N06002	43	1650° F (899°C)	95,000	35,000	23,300	23,300	22,300	20,300	19,600	17,500	7,700
M400	Monel [®] 400	N04400	42	900° F (482°C)	70,000	25,000	16,700	13,600	13,100	13,000	8,000	-	-

Thermowell Material Selection Guide

This recommended material list is to only be used as a guide, since variations in temperature, pressure, concentration, and impurities in the corrosive medium may affect actual performance. Contact Daily Thermetrics for recommendations for special applications.


			(CORROSION RES Informati				E			
Corrodent	Temp. °F	Conc. %	Recommended Material	Corrodent	Temp. °F	Conc. %	Recommended Material	Corrodent	Temp. °F	Conc. %	Recomme Mater
Acetic Acid	212	ALL	Monel	Copper Plating	180		304SS	Oxalic Acid	212	ALL	304SS
Acetic Anhydrite	300		Nickel	Solution (Cyanide) Copper Plating				Photographic	100	ALL	304SS
Acetone	212	ALL	304SS	Solution (Acid)	75		304SS	Bleaching Palmitic Acid	See Fatty	(Acide	
Acetylene	400		304SS	Corn Acid	200		304SS	Phosphoric Acid	212	ALL	316SS
Alcohols	212	ALL	304SS	Creosote	200	ALL	304SS	Phenol	212	ALL	316SS
Alum. (Potassium or	300	ALL	Hast C	Crude Oil	300		Monel	Potassium Compounds		ium Compo	
Sodium) Aluminum Chloride	212	ALL	Hast C	Ethel Acetate	See Laqu	ier Thinner			300		Steel
Aluminum Sulfate	212	ALL	316SS	Ethyl Chloride Dry	500		Steel	Propane Rosin	700	100	316SS
	212	ALL	304/316SS	Ethanol	See Alco	hols			75	100	1
Ammonia Dry Ammonia Hydroxide				Ethylene Glycol (Uninhibited)	212	ALL	304SS	Sea Water		AL 1	Monel
Ammonia Aqua)	212	ALL	304/316SS	Ethylene Oxide	75		Steel	Soap & Detergents	212	ALL	304SS
Ammonium Chloride	300	50	Monel	Fatty Acids	500	ALL	316SS	Sodium Bicarbonate	212	20	316SS
Ammonium Nitrate	300	ALL	304SS	Ferric Chloride	75	ALL	Hast C	Sodium Bisulfite	212	20	304SS
mmonium Sulfate	212	ALL	316SS	Ferric Sulfate	300	ALL	304SS	Sodium Bisulfate	212	40	304SS
Amyl Acetate	300	ALL	304SS	Formaldehyde	212	40	316SS	Sodium Carbonate	212	30	316SS
Aniline	25		Monel	Formic Acid	300	ALL	316SS	Sodium Chloride	300	ALL	Monel
sphalt	250		304SS	Freon	300	7.66	Steel	Sodium Chromate	212	ALL	316SS
Atmosphere (Industrial			304SS	Fluorine, Anhydrous	100		304SS	Salt or Brine		um Chlorin	1
& Marine) Barium Compounds	See Calc	um		Furfural	450		316SS	Sodium Cyanide	212	ALL	304SS
Beer	70		304SS	Gasoline	300		Steel	Sodium Hydroxide	212	30	316SS
Benzene (Benzol)	212		Steel	Glucose	300		304SS	Sodium Hypochlorite	75	10	Hast C
Benzoic Acid	212	ALL	316SS	Glue ph 6-8	300	ALL	304SS	Sodium Nitrate	212	40	304SS
Bleaching Powder	70	15	Monel	· ·	212	ALL	Brass	Sodium Nitrite	75	20	304SS
Borax	212	ALL	Brass	Glycerine Hydrobromic Acid	212	ALL	Hast C	Sodium Phosphate	212	10	Steel
Bordeaux Mixture	200	ALL	304SS	Hydrochloric Acid				Sodium Silicate	212	10	Steel
	400	ALL	316SS	(37-38%)	225	ALL	Hast C	Sodium Sulfide	212	10	316SS
Boric Acid				Hydrogen Chloride Dry	500		304SS	Sodium Sulfite	212	10	316SS
Bromine	125	DRY	Monel	Hydrocyanic Acid	212	ALL	304SS	Sodium Sulfate	212	30	316SS
Butane	400	ALL	Steel	Hydrofluoric Acid	212	60	Monel	Sodium Thiosulfate	212	ALL	304SS
Butyl Alcohol	See Alcol	nois	Used O	Hydrogen Fluoride Dry	175		Steel	Steam			304SS
Butyric Acid	212		Hast C	Hydrofluogilicic Acid	212	40	Monel	Steamic Acid	See Fatty	Acids	
Calcium Bisulfite	75	ALL	Hast C	Hydrogen Peroxide	125	10-100	304SS	Sugar Solution	See Gluc	ose	
Calcium Chloride	212	ALL	Hast C	Kerosene	300	ALL	Steel	Sulfur	500		304SS
Calcium Hydroxide	300	20	Hast C	Laquers & Thinners	300	ALL	304SS	Sulfur Chloride	75	DRY	316SS
Calcium Hypochlorite		ching Powe	der	Lactic Acid	300	ALL	316SS	Sulfur Dioxide	500	DRY	316SS
Carbolic Acid	See Pher			Lime	212	ALL	316SS	Sulfur Trioxide	500	DRY	316SS
Carbon Dioxide Dry	800	ALL	Brass	Linseed Oil	75		Steel	Sulfuric Acid	212	0-10	Monel
Carbonated Water	212	ALL	304SS	Magnesium Chloride	212	50	Nickel	Sulfuric Acid	212	0-100	Hast C
Carbonated Beverages	212		304SS	Magnesium Hydroxide	75	ALL	304SS	Sulfuric Acid	180-190	90-100	316SS
Carbon Disulfide	200		304SS	(or Oxide)			304SS	Sulfuric Acid, Fuming	175		Hast C
Carbon Tetrachloride	125	ALL	Monel	Magnesium Sulfate	212	40		Sulfurous Acid	75	20	316SS
Chlorine Dry	100		Monel	Mercuric Chloride	75	10	Hast C	Titanium Tetrachloride	75	ALL	316SS
hlorine Moist	100	ALL	Monel	Mercury	700	100	Steel	Tannic Acid	75	40	Hast C
hloraceptic Acid	212	ALL	Monel	Methylene Chloride	212	ALL	304SS	Toluene	75		Steel
Chloroform Dry	212		Monel	Methyl Chloride	Dry	75	Steel	Trichloracetic Acid	75	ALL	Hast C
hromic Acid	300	ALL	Hast C	Milk, fresh or sour	180		304SS	Trichlorethylene	300	DRY	Monel
Cider	300	ALL	304SS	Molasses	See Gluc	ose		Turpentine	75		316SS
Citric Acid	212	ALL	Hast C	Natural Gas	70		304SS		150		
Copper (10) Chloride	212	ALL	Hast C	Nitric Acid	75	ALL	304SS	Varnish			Steel
Copper (10) Nitrate	300	ALL	316SS	Oxygen	75	ALL	Steel	Zinc Chloride	212	ALL	Hast C
Copper (10) Sulfate	300	ALL	316SS	Oleic Acid	See Fatty	Acid		Zinc Sulfate	212	ALL	316SS


Wake Frequency Analysis

Daily Thermetrics provides Wake Frequency Calculations free of charge on all orders in accordance with **ASME PTC 19.3 TW-2016**.

Frequency Ratio / Vortex Shedding

Fluid flow around a traditional cylindrical thermowell generates vortices that are produced at a calculable frequency. Stresses created from thermowell oscillations are greatly amplified when the vortex shedding frequency reaches the natural frequency of the thermowell, which can lead to thermowell failure. The wake and natural frequencies are calculated and the ratio compared to requirements set by the ASME code.

Steady State / Dynamic Stress

Steady state and dynamic stress must not exceed the thermowell's calculated maximum allowable stress. Steady state stress is found by the Von Mises Calculation, while dynamic stress is calculated from the transverse and in-line forces along the thermowell.

Pressure

The final check ensures that process design pressure does not exceed the allowable pressure of the thermowell at the design temperature. Maximum allowable pressure is calculated for the flanged/threaded connection, shank wall thickness, and tip thickness. Required minimum tip and wall thicknesses can be calculated per ASME Section VIII Div 1 Paragraph UG-28.

Wake Frequency Analysis

Wake Frequency Analysis

Daily Thermetrics offers the most thorough Wake Frequency Analysis (commonly referred to as thermowell vibration and/or velocity calculations) in the industry free of charge with every thermowell order.

Over the years, the refining industry has been steadily increasing unit throughput. Since today's process velocities are increasingly higher than in the past, it is imperative to verify that thermowell designs are suitable for every service and application.

DAILY THERMETRICS CORPORATION 5700 HARTSDALE DRIVE I HOUSTON, TX 77036 I WWW.DAILVINST.COM

		Customer: Daily Thermetrics Tag #: TW-36415 Revision: 0 Date: 5/3/2016 Process	P.O. #: DTC Order #:	
		Revision: 0 Date: 5/3/2016	DTC Order #:	
		Date: 5/3/2016		DI
			Quote #:	Q
		Process	Note:	By RBL
	· · · · · ·		Conditions	-
		Process Fluid:	HYDRO	CARBONS
		Fluid Density:	35.500	pcf
		Fluid Viscosity:	0.750	centipoise
		Fluid Velocity:	2.754	ft/s
	s.	Max Pressure:	410.000	psi
		Max. Temperature:	750.000	F
	181		aterial Properti	
		Modulus of Elasticity (E):	24100000	
v		Allowable Stress (S): Fatigue Limit (Sf):	9800	
		Density (Pm):	13600	psi lb/in^3
		Density (Pm):	0.29	10/11/3
· · · · · · · · · · · · · · · · · · ·		Calcula	ted Results	
		Fatigue Endurance Limit of TW:	11582	psi
		In-Line Resonance Velocity (VIR):	68	ft/s
DORE SIZE -		Cyclic Stress of TW (So.max):	594642	psi
		Von Mises Stress (Root):	43.17	psi
		Steady-State Stress Limit:	14700	psi
		Steady-State Stress of TW (S.max):	443.93	psi
			9.78	
		Dynamic Stress of TW (So.max):		psi
V-►		Reynolds Number (Re):	12124	psi
Thermowell Configura		Reynolds Number (Re): Strouhal Number (Ns):	12124 0.198	psi
Thermowell Configura Thermowell Type:	VanStone	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nsc):	12124	psi
Thermowell Configura Thermowell Type: Stem Style:	VanStone Tapered	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nsc): Natural Frequency (fnc):	12124 0.198 0.06 381	Hz
Thermowell Configura Thermowell Type: Stem Style: Thermowell Material:	VanStone Tapered 316L SS	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nsc): Natural Frequency (/nc): Wake Frequency (fs):	12124 0.198 0.06 381	*
Thermowell Configura Thermowell Type: Stem Style: Thermowell Material Flange Size/ Rating:	VanStone Tapered 316L SS 1-1/2 300#	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nsc): Natural Frequency (fnc): Wake Frequency (fs): Frequency Ratio (fs/fnc):	12124 0.198 0.06 381 9 0.023	Hz Hz
Thermowell Configura Thermowell Configura Stem Style: Thermowell Material Flange Size? Rating Flange Facing? Thread Type	VanStone Tapered 316L SS 1-1/2 300# RF	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nse): Natural Frequency (fnc): Wake Frequency (fs): Frequency (fs): Allowable Stem Pressure (Pc):	12124 0.198 0.06 381 9 0.023 3843	Hz Hz psi
Thermowell Configura Thermowell Type: Stem Style: Thermowell Material Flange Size/ Rating: Flange Facing/ Thread Type: Flange Material	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS	Reynolds Number (Re): Strouhal Number (Ns): Scruton Number (Nsc): Natural Frequency (fnc): Wake Frequency (fs): Frequency Ratio (fs/fnc):	12124 0.198 0.06 381 9 0.023	Hz Hz psi
Thermowell Configura Thermowell Type: Stem Style: Thermowell Material Flange Size' Rating: Flange Facing/Thread Type: Flange Material Overall Length (OAL)	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in.	Reynolds Numher (Rc): Strouhal Number (Ns): Scruton Number (Ns): Natural Frequency (fs): Wake Frequency (fs): Frequency Ratio (fs/fns): Allowable Stem Pressure (Pc): Allowable Tip Pressure (Pt):	12124 0.198 0.06 381 9 0.023 3843 38188	Hz Hz psi
Thermovell Configura Thermovell Type: Stem Style Thermowell Material Flange Size Rating Flange Facing/ Thread Type: Flange Material Overall Length (OAL) Unsupported Insertion Length (D)	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in.	Reynolds Numher (Rc): Strouhal Number (Ns): Scruton Number (Ns): Natural Frequency (fs): Wake Frequency (fs): Frequency Ratio (fs/fns): Allowable Stem Pressure (Pc): Allowable Tip Pressure (Pt):	12124 0.198 0.06 381 9 0.023 3843 3843 38188 well Rating	Hz Hz psi psi
Thermovell Coafigura Themovell Type: Sem Syle Themovell Material Flangs Facing / Thecad Type Flangs Facing / Thecad Type Flangs Facing / Thecad Type Flangs Material Overall Length (OL) Unsupported/Insertion Length (OL)	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in. 1.000 in.	Reynolds Number (Rs): Strondant Number (Ns): Senton Number (Ns): Natural Frequency (Inc): Wake Prequency (Inc): Allowalde Steam Pressure (Pt): Allowalde Steam Pressure (Pt): Allowalde Tip Pressure (Pt):	12124 0.198 0.06 381 9 0.023 3843 38188 well Rating Frequency Ratio:	Hz Hz psi psi PASS
Thermovell Configura Themovell Type: Sum Style: Thermovell Matrial. Flange Size Rating: Flange Facing Thread Type: Flange Facing Thread Type: Flange Matrial: OvenII Length (OAL) UssupportedInsertion Length (U): Shielded Length (SL) Read Dianeter (Q):	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in. 1.000 in. 1.188 in.	Reynolds Number (Rs): Strondant Number (Ns): Senton Number (Ns): Natural Frequency (Inc): Wake Prequency (Inc): Allowalde Steam Pressure (Pt): Allowalde Steam Pressure (Pt): Allowalde Tip Pressure (Pt):	12124 0.198 0.06 381 9 0.023 3843 38188 well Rating Frequency Ratio: eady-State Stress:	Hz Hz psi psi PASS PASS
Thermovell Configura Themovell Type: Sem Syle: Themovell Material Flange Size Raing Flange Facing Thread Type: Flange Facing Thread Type: Unsupported Insertion Length (OAL) Unsupported Insertion Length (ISL) Root Damster (O): Tip Damster (V):	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in. 1.000 in. 0.750 in.	Reynolds Number (Rs): Strondant Number (Ns): Senton Number (Ns): Natural Frequency (Inc): Wake Prequency (Inc): Allowalde Steam Pressure (Pt): Allowalde Steam Pressure (Pt): Allowalde Tip Pressure (Pt):	12124 0.198 0.06 381 9 0.023 3843 38188 well Rating Frequency Ratio: cedy-State Stress: Dynamic Stress:	Hz Hz psi PASS PASS PASS
Thermovell Configura Themovell Type: Sum Syle: Themowell Material Flage Sace Rating: Flage Facing/Theed Type: Flage Sace Rating: Ovenil Length (OAL): Unsupported/Inscriton Length (UL): Shielded Length (SL): Root Diameter (Q): Tp Diameter (Q): Broe Size:	VarStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in. 1.000 in. 1.000 in. 1.088 in. 0.750 in. 0.281 in.	Reynolds Number (Re): Strondarl Number (Ne): Strondarl Number (Ne): Natural Frequency (Ju): Wake Frequency (Ju): Allowable Stem Pressure (Pt): Allowable Stem Pressure (Pt): Strongency (Pt): Str	12124 0.198 0.06 381 9 0.023 3843 3843 843 843 843 844 Frequency Ratio: cady-State Stress: Dynamic Stress: Pressure:	Hz Hz psi PASS PASS PASS PASS
Thermovell Codifigura Themovell Type: Sem Syle: Themovell Material Flangs Size Raing: Flangs Facing Thread Type: Flangs Facing Thread Type: Overall Length (OL) Unsupported Insection Length (IC) Root Damater (IO) Tip Damater (V)	VanStone Tapered 316L SS 1-1/2 300# RF 316L SS 11.000 in. 9.380 in. 1.000 in. 0.750 in.	Reynolds Number (Rs): Strondant Number (Ns): Senton Number (Ns): Natural Frequency (Js): Wake Frequency (Js): Allowable Stem Pressure (Pt): Allowable Tip Pressure (Pt): Stronger (Pt): St	12124 0.198 0.06 381 9 0.023 3843 3843 843 843 843 844 Frequency Ratio: cady-State Stress: Dynamic Stress: Pressure:	Hz Hz psi PASS PASS PASS

mcv Ratio equals Wake Frequency (fs) divided by Natural Frequency (fnc). Frequency Ratio will indicate "PASS" in the Acceptability . Frequency fauto equato whate frequency (1) is unwate by Namira Frequency (1n). Frequency fauto with instance FASS in the fritterion only the Frequency Ratio is less than or equal to 0.8. . PTC: If cyclic stress conditions "APPLICABLE", Wake Frequency(fs) must be less than 0.4 times the Natural Frequency(fnc). Fyclic stress conditions "NA", the stress starts frequency shall satisfy $f_s < 0.4$ more 0.6 phc or $f_s < 0.6$ more . PTC: If low density gas is "PASS", the steady state frequency shall satisfy $f_s < 0.8$ /mc, cyclic stress does not apply.

Thermowell Details		Process Details	
Tag Number:		Process Name:	
TW Model:		Design Temperature:	۴
Stepped Shank:	No (Standard) ~	Design Pressure:	psi
TW Material:	~	Velocity:	ft/s
Insertion Length (U):	in.	Density:	lb/ft ³
Root Diameter (Q):	in.	Viscosity:	c P
Tip Diameter (V):	in.		
Bore Diameter (B):	in.		
Tip Thickness (TT):	in.		
Shielded Length (SL):	in.		
Root Fillet Radius:	0.125 in.		

Online Calculator

Daily Thermetrics now offers Wake Frequency Analysis per the ASME PTC 19.3 TW-2016 code online and free of charge. Qualified customers will be given login credentials to generate more thorough reports of the calculations. You may access the online calculator at: http://calc.dailyinst.com/WFA/calc

CASE STUDY:

In a recent multi-billion dollar refinery expansion project, Daily Thermetrics found that approximately 25% of all of the thermowells designed by a major EPC firm failed to meet the design criteria set forth by the process conditions. Daily Thermetrics' expertise was called upon to correct this situation, redesigning the thermowells while saving the EPC and customer countless engineering hours in design and field installations. Daily Thermetrics' assistance in the original thermowell design could have avoided this costly mistake.

Daily Helix Thermowell (DHTW[™]) utilizing VE Technology[®]

US PATENT 8424396B2, US PATENT APPLICATION 13/858,056, AND WORLDWIDE PATENTS AND APPLICATIONS PENDING

INTRODUCTION

Flow past cylindrical thermowells creates alternating vortices which induce thermowell vibration at the vortex shedding frequency. Mechanical resonance occurs when the vortex shedding frequency reaches the natural frequency of the thermowell and causes a dramatic increase in dynamic stress, ASME PTC 19.3 TW recommends standards based upon calculated results to prevent several different thermowell failure modes. Often, the conservative formulas and assumptions in the ASME code tend to be very prohibitive for high velocity applications. Traditional measures to mitigate these effects include using a collar, creating a bulkier thermowell, or shortening the nozzle length. Although these methods can prevent thermowell failure, they also have significant shortcomings. Larger diameter thermowells reduce temperature sensing accuracy, delay response times, and transfers a larger drag force to the nozzle. Collars require an interference fit which is difficult to achieve and is not recommended by the ASME PTC code due to the inconsistent nature of installation. The clear solution to high velocity applications is the Daily Helix Thermowell (DHTW[™]) utilizing VE technology[®].

VE TECHNOLOGY®

Daily Thermetrics is the exclusive supplier of the Daily Helix Thermowell (DHTW™) utilizing the patented VE Technology[®]. VE technology[®] combines helical strakes with a hemispherical tip which results in a special geometry that change the characteristics of the vortices created and prevents vibration induced failures. Multiple industries utilize the helical strake design and have proven its effectiveness in preventing vibrational failure through thousands of hours of service life.

Daily Helix Thermowell (DHTW[™]) utilizing VE Technology[®]

Benefits and Features

• Vortex-Induced Vibration Dampening

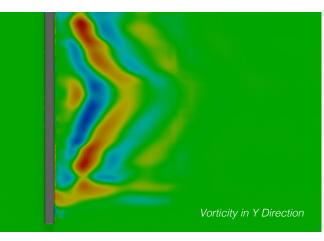
The DHTW[™] breaks up flow and reduces transverse forces caused by the wake frequency approaching the natural frequency of the thermowell. These vibrations, which would cause reduced life and failure due to metal fatigue in standard thermowells, no longer pose an issue with VE Technology[®].

Solid Construction

The DHTW[™] is machined from a single piece of solid bar stock and has better geometry than welded strakes.

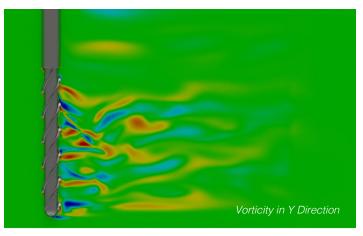
• Hemispherical Tip

The hemispherical tip meets all the required thickness specifications from ASME PTC 19.3 TW-2016 and minimizes flow disturbances.


Daily Thermetrics is the exclusive supplier of the Daily Helix Thermowell (DHTW[™]) utilizing the patented VE Technology[®].

Helical strakes prevent a common failure mechanism in thermowells **vortex induced vibrations**. Contact Sales to understand how the Daily Helix Thermowell can help overcome your difficult process conditions.

Standard Cylinder


A standard cylinder (normal thermowell) obstructs the flow, causing large vortices in the wake and increasing the amplitude of the vibrations.

Vorticity Magnitude

Standard Cylindrical Thermowell

The wake produces large vortices that extend the length of the portion of the thermowell that is exposed to the flow. The oscillation of these vortices is what causes the vortex induced vibrations. If the frequency of the vortex shedding approaches the natural frequency of the thermowell, then failure can occur.

Daily Helix Thermowell (DHTW[™])

The vortices produced by the wake of the helical strake are much smaller and non-uniform. The combinations of these smaller vortices, in contrast with a standard thermowell, are negligible when assessing vortex induced vibrations. Since the smaller vortices are shed non-uniformly, the vortex shedding will not cause resonation at the thermowell's natural frequency.

STANDARD TESTING FOR ALL THERMOWELLS

- Positive Material Identification (PMI) per ASTM E 1085 and ASTM E 1086
- Ultrasonic Volumetric Test of Full Penetration Welds per ASME Section V, Article 4

ADDITIONAL TESTING AVAILABLE

- Hydrostatic Test (Internal or External)
- Hardness Test per ASTM E 384
- Ferrite Test per API 582
- Magnetic Particle Test per ASME Section V Article 7
- Dye Penetrant Test per ASME Section V Article 6
- Eddy Current Test per ASME Section V Article 8
- Leak Testing per ASME Section V Article 10

OPTIONAL TEST REPORTS / CERTIFICATES

Reports available for tests:

- Positive Material Identification (PMI) Report per ASTM E 1085 and ASTM E 1086
- Positive Material Identification (PMI) Certificate per ASTM E 1085 and ASTM E 1086
- NACE Compliant Certificate per MR0103
- Material Test Reports
- Test Reports reviewed by NDT Level II Inspectors
- Test Procedures reviewed and approved by ASNT NDT Level III

QUALITY SYSTEM

- ISO 9001 Certified
- Thermowell Serialization for Complete Traceability
- Climate and Contaminant Controlled Manufacturing Facility
- NDT Level II Inspectors
- ASME Section IX Qualified Welders
- ATEX 94/9/EC Quality Assurance
- PED 2014/68/EU Compliant
- IECEx Quality Assessment Report
- INMETRO Quality Assessment
- ASME U Stamp Certificate Holder
- Multiple Worldwide Certificates (See Sales for More Information)
- Canadian Registration Numbers for All Provinces

Daily Thermetrics Site Turnaround (STAR[™]) Services

Daily Thermetrics *STAR™ Service* programs complement and leverage our technical and production capabilities to meet turnaround instrumentation demands. A STAR™ Specialist is a graduate engineer that is experienced with all Daily Thermetrics product lines and plant process temperature measurement requirements.

Pre-TAR Planning

STAR[™] Specialists conduct thorough pre-TAR field verifications and create inspection and replacement plans that drastically reduce the number of *discovery items* during TAR.

Execution

STAR[™] Specialists are highly experienced in supervising turnkey TAR temperature instrumentation inspection and replacement programs. In addition to ensuring proper inspection procedures and redesign as necessary, they also manage production and shipping to ensure no replacement items become *critical path*. STAR[™] Specialists provide a direct link to all divisions of Daily Thermetrics' in order to quickly provide estimates and arrange timely delivery.

Inspection

Daily Thermetrics provides dedicated Level II inspectors who are specially trained in inspection of temperature measurement equipment. We offer turnkey inspection and recertification of existing temperature measurement equipment, including visual testing, PT, PMI, UT, eddy current, hydrostatic testing, and others upon request.

Post-TAR Close Out

STAR[™] Specialists manage all necessary documentation – from inspection reports and wake frequency analysis to full data sheets for each item inspected, redesigned, and/or replaced.

From on-site technical service and turnaround support to thermowell inspection services, STAR[™] Services can be customized to suit refinery TAR requirements.

- PRE-TURNAROUND PLANNING
- INVENTORY EVALUATION & STANDARDIZATION
- FIELD VERIFICATION / SURVEY
- ON-SITE TECHNICAL SUPPORT
 - Troubleshooting and Field Diagnostics
 - Design and Drawings
 - Wake Frequency Analysis
- ON-SITE SALES SUPPORT
 - Estimates
 - Rush Delivery
- INSTALLATION SUPERVISION
- INSPECTION SERVICES

Daily Thermetrics Corporation

9600 W Gulf Bank Rd. Houston, TX 77040 USA +1 713.780.8600 sales@dailyinst.com www.dailyinst.com © 2024 Daily Thermetrics Corp.